Recent advances in inhalation anesthesia
by
Steffey EP.
Department of Surgical & Radiological Sciences,
School of Veterinary Medicine,
University of California, Davis, CA 95616, USA.
epsteffey@ucdavis.edu
Vet Clin North Am Equine Pract. 2002 Apr;18(1):159-68


ABSTRACT

Both desflurane and sevoflurane offer theoretical and practical advantages over other inhalation anesthetics for horses. The lower solubility of both agents provides improved control of delivery and helps to counteract the confounding influence of the voluminous patient breathing circuit commonly used for anesthetizing horses. The lower solubility should account for faster rates of recovery compared with the older agents; whether or not the quality of recovery differs remains to be objectively evaluated in a broad range of circumstances. The pharmacodynamic effects are, in large part, similar to those of isoflurane (e.g., low arrhythmogenicity) but with some differences. For example, desflurane may be overall more sparing to cardiovascular function (especially during controlled ventilation) compared with isoflurane and sevoflurane, which are roughly similar. Respiratory depression with both new agents is equal to or more depressing than isoflurane, suggesting the use of mechanical ventilation, especially in circumstances of prolonged management (i.e., hours of anesthesia). Both new anesthetics, not surprisingly, are expensive. From this point there are some agent-unique considerations. The anesthetic potency of both agents is less than that of isoflurane, which influences the cost of anesthesia, but also places an upper limit on inspired oxygen concentration (of particular concern with desflurane). Both agents require new vaporizers, but because of the high boiling point and steep vapor-pressure curve of desflurane, new technology was required. This translates into more costly equipment, adding to the cost of desflurane use. In addition, electricity is necessary for the new desflurane vaporizer to function, which limits its portability and adds additional practical considerations in its clinical use. On the other hand, desflurane strongly resists degradation both in vitro and in vivo, but in vitro degradation of sevoflurane by CO2 absorbents may produce renal injury. This may be true especially in association with low fresh-gas inflow rates (used to reduce the cost of using the new agent), and university based practices, where prolonged anesthesia is common.
People
Reptiles
Obstetric anesthesia
Molecular mechanisms
The spongia somnifera
Chloroform anaesthesia
'My beloved chloroform'
'The secularisation of pain'



Refs
and further reading

general-anaesthesia.com
HOME
HedWeb
Nootropics
cocaine.wiki
Future Opioids
BLTC Research
MDMA/Ecstasy
Superhappiness?
Utopian Surgery?
The Good Drug Guide
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World